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Metathesis reactions involving alkynes and=X@R linkages Scheme 1. [2+2] Cycloaddition Reactions with Nitriles Involving
constitute an important and an emerging field from a stoichiometric Both TI=CBu and Ti=CH®Bu Linkages
and catalytic perspective:Moreover, the process denoted “alkyne (‘P\ CHyBu rp\ RN
metathesis” is now becoming a standard procedure for reactions N_Ti< -(N—Tig NCR N—\TiOCR
such as cross-metathéstsand ring-closing metathesighe latter \_P/ SCH'Bu -CHy'Bu K_P/ Sc'Bu I
of which has resulted in the design of natural products, and P 'Bu
pharmaceutically important moleculgslthough alkyne metathesis NCRl . A planar-NCz
or Wlttlg-llkg reactions are a known occurrence in organotransition % oipy ( P\ NG
metal chemistry* and metat-metal multiply bonded frameworks, (-P\ N—C~ (-P 2 N—Ti:‘;CR
metathetical reactions involving alkylidynes in groups 4 or 5 have N_Ti/’ R N = NO p/ xgu
thus far been unknowk This situation may be traced to the scant \_P/ “CH,'Bu LP Q,Piprz cyclo-NC,
number of terminal transition metal alkylidyne systems prior to _ Ph.3:R=Pr 4 R=!Bu 1:R=Ad, 2

group 66

Given our ability to generate highly nucleophilic and terminal
titanium alkylidynes) it was speculated that nitriles should undergo spectroscopic signatures 16 When the reaction was performed
alkylidyne for nitride exchange. This hypothesis was particularly in cyclohexane using a slight excess-af0% enrichedN=CAd 48
appealing for two reasons. Azametallacyclobutadiene intermediatesthelsN NMR spectrum of (PNP)TINCAJCBU) (2)-5N signifiled
along the alkylidyne/nitrile metathesis,li‘nvolvinﬁt[:R linkages, a deshielded resonance at 672.6 ppm°GS5referenced to Nkfl)
have been proposed but not obser¥dd Additionally, terminal at 0 ppm¥ On the basis of thé above observations, we propose
titanium nitrides (or group 4 nitrides) are an unknown class of that transiénA undergoes a [22] cycloaddition of NECR,tO afford
Iigan<_js and are expected to be ipherently reactive given the likely the azatitanacyclobutadiene specigiaiia-NC;), 1 and2 (Scheme
pollirgﬁgdpggzeir\?v;;;k;ivigtrr?iltjrlitllgfstsjcérr]]dé §Bu and N=CAd 1) However, given our inability to obtain suitable crystals for X-ray

(Ad = 1-adamantyl), [2-2] cycloadd across the neopentylidyne diffraction analysis, it is possible to propose that the,@gment

linkage of intermediate (PNPRCBU’ (A) (PNP= N[2-P(CHMe),- ::zasg Sctﬁ)mfo Slﬂfr?ar? s"| %Z?Oiéougcsésrﬁebf) bgggeﬁea;i:ﬁ -os-
4-methylphenyl]™), to afford the first examples of azametalla- yclopropy y 2 ) P P

cyclobutadienes, specifically (PNP)Ti(NCHQD) (R='Bu, 1; Ad, .Slblh?é’ the highly deshlglde@N resonance for the N ra.mewor.k
" : ; in 2-15N agrees well with our predicte®N NMR chemical shift
2). Addition of electrophiles such as M&CI or Al(CHy)s to the . X
o a by DFT methods (675.8 ppmiXhus suggesting thdtand2 contain
latter complexes promote compléBuC®~ for N3~ exchange thus : P . :
: o i . . planar TiNG motifs with significant TN multiple bond character.
forming the trapped titanium nitride concurrent with extrusion of

the alkynéBuC=CR. A combination of computational and isotopic Ilntgdbd;tg)g ’Gngslrﬁﬁflﬁ?i:;t?glglse (F:)trr?)ilicct :rﬁerNE:EZ(I;(CJZrIT:])e)rv(grsus
labeling studies support the notion that the metallacycle scaffolds ) g oy

. . e A the planar TiNG surrogate, and th®N NMR chemical shift for
in 1 and2 are planar rings, with significant multiple bond character this aeometry is located 3614 pom ubfield from the experimental
between Ti and N. In addition, experiments utilizifyl enriched 9 Y 4 ppm up P

IN=CAd*8 clearly reveal the titanium imide nitrogen to originate Vallgc?rg;?iins%rf)iazndz is highly dependent on the nature of the
from complete metathetlcal exchﬁnge with th_e nitrile. nitrile. Consequently, when less hindered nitriles such =CR
When (PNP)T#+=CH'Bu(CH,'Bu)’ is treated with N=C'Bu (neat

= i ittig-li i
or stoichiometric), immediate precipitation of an orange colored R Ph, 'Pr) are gmployed, W|Ft|g like chemlstry precedes
solid, 1., is readily observed (Scheme 1). In, the 'H NMR a-hydrogen abstraction, thus taking place exclusively at the

spectrum ofl is indicative of formation of a single titanium product alkylidene moiety in (PNP)FrCHBU(CH,Bu) to afford the imide-
Pe - IS 1N 9 pr alkyls (PNP)T=N[C(R)CHBU](CH,Bu) (R = Ph,3; R = Pr, 4)
having two inequivalenBu groups, as well as an asymmetric PNP

framework. The latter salient feature is further manifested by two ;n g::(tcr?)!igt )i/cleclzdhsagcctg?i?:ti?tan éi%dgor;;?nmoudtrl]ré;cllqei EIZEE
doublets in thelP NMR spectrum. Most notably, tHéC NMR P P ' P

spectrum ofl revealed two highly deshielded resonances at 240.5 scrutlmz_ed by s,_lngle_ crystal X-ray dlffract|c§n._ . .
. o . Despite the TiN@ring in complexed and?2 being antiaromatic,
and 178.0 ppm, neither of which is coupled to a H, and is )
. they are exceedingly stable up to 100 when excluded from
comparable td*C resonances for previously reported tungstena-

cyclobutadiene8.When an analogous reaction involving (PNP)- moisture and air. No exchange was observed whar 2 was
Ti=CHBU(CHBU) and N=CAd is conducted in @1, complex heated in an excess of N&Li, NCAd, PhG=CPh, or (CH);SiC=

CSi(CH); thus hinting that the azatitanacyclobutadiene cor# in
t University of Michigan. and 2 is not amenable to fragmentation under these conditions.
*Indiana University. However, when complexesand2 were treated with CISi(Chjs,

2 also precipitates as an orange colored powder in high yield (73%,
Scheme 1). Multinuclear NMR spectral data fodisplays similar
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Figure 1. Synthesis o6 and6 and molecular structures with H-atoms, solvent, independent molecules, and isopropyl methyls excluded for clarity.

completeéBuC®~ for N3~ exchange occurred quantitatively, concur- acid stabilized nitrideC. By manner of a 1,2-AlC bond addition
rent with extrusion of the alkyne REC'Bu (R = '‘Bu and Ad) and across the reactive &N linkage, and subsequent binding of another
formation of the trimethylsilyl imide complex (PNPYFN[Si- Al(CHa3)3, formation of6 is then plausible. However, we are unsure
(CHg)3](CI) (5) (Figure 2)8 The former organic byproduct was as to whether 1,2-AIC bond addition occurs prior to or after binding
confirmed via'H and 13C NMR spectra, while the identity of  of the second Al(Ch)s.

complex 5 was established by an independent synthsis. Acknowledgment. We thank Indiana University-Bloomington,
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unarguably depicts a five-coordinate titanium complex bearing a 0348941 to D.J.M.) for financial support of this research and
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A; Ti=N-Si, 151.9(2); Figure 1). The imide nitrogen fiwas
unequivocally confirmed to originate from nitrile metathesis with
the transient B=EC'Bu ligand, since the isotopome&r>N cleanly
produced (PNP)ESN[SiI(CHa)s](Cl) (5)-15N (5N NMR: 553.9 References
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